Hand-In Assignment 4

- 1. Let G be an open subset of (M, d) and F be a closed subset of (M, d). Prove or disprove: G\F is an open subset of (M, d).
- 2. Let $G = \{(x, y) \in \mathbb{R}^2 : x \neq y\}$. Prove that G is an open subset of \mathbb{R}^2 . [10 pts]
- 3. Suppose that E is a nowhere dense subset of (M, d). Prove or disprove: E^{*c*} is everywhere dense in M. [10 pts]
- 4. Let \diamond be a set constructed out of the interval [0, 1] as follows:

Step 1: Partition the interval into 5 parts of equal length and remove every other (open) part. Thus, you obtain the set $I_1 = [0, 1/5] \cup [2/5, 3/5] \cup [4/5, 1]$

Step 2: Partition each of the interval segments of I₁ further into 5 parts of equal length and remove every other (open) part. Thus, you obtain the set I₂ = $[0, 1/25] \cup [2/25, 3/25] \cup [4/25, 1/5] \cup \cup [2/5, 11/25] \cup [12/25, 13/25] \cup [14/25, 3/5] \cup \cup [4/5, 21/25] \cup [22/25, 23/25] \cup [24/25, 1]$

Step n: Partition each of the interval segments of I_{n-1} into 5 parts of equal length and remove every other (open) part to obtain I_n .

Set $\diamond = \bigcap_{n=1}^{\infty} \mathbf{I}_n$.	
a) Is \diamond closed as a subset of \mathbb{R} ?	[2 pts]
b) Is \diamond countable or uncountable?	[2 pts]
c) Is \diamond dense, nowhere dense, or neither?	[2 pts]
d) Is \diamond perfect?	[2 pts]
e) What is the "length" (i.e measure) of \diamond ?	[2 pts]
f) The elements of \diamond can be most easily described in terms of some base p	
decimal expansion. What p should we choose? In terms of the decimal	
expansion base p, how would you decide whether x is an element of \diamond ?	
	[10 pts]
g) Construct a Cantor-like function for \diamond .	[5 pts]